Acoustic Characterization of a Photomask Cleaning System

X. Chen 1, M. Zhao 3, P. Yam 1, C. Zanelli 1, O. Nagaya 2, H. Arai 2, K. Kutsuna 2, and M. Keswani 3, a

1 Onda Corporation, 1290 Hammerwood Ave., Sunnyvale, CA, USA
2 R&D Division, Honda Electronics Co., Ltd., Toyohashi, Japan
3 Department of Materials Science and Engineering, University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ, USA

a manishk@email.arizona.edu

INTRODUCTION

Although megasonic technology is widely used to clean photomasks, the acoustic performance is not well understood. Of all the process parameters that influence cleaning (e.g., temperature, flow, pH, gas concentration, mechanical translation, etc.) the characterization of the ultrasonic field remains elusive. The shift to EUV lithography processes elevates this issue further since the risk of yield loss is even higher in the absence of a pellicle. This study aims to achieve a deeper understanding of the complex acoustic behavior by presenting results from three independent measurement techniques.

METHODS

Different measurement techniques were used to better understand the acoustic performance of a megasonic photomask cleaning system. High spatial resolution maps characterized the acoustic field. Cavitation measurements indicated an absence of transient cavitation and low level stable cavitation. Schlieren imaging demonstrated the dynamic sweeping behavior on the mask surface. The culmination of these results help explain the novel cleaning performance.

RESULTS & DISCUSSION

Total Pressure Uniformity

- 3W Setting, 2.48W Measured
- 12W Setting, 8.95W Measured

Direct Field and Cavitation Pressure

- Cavitation vs. Power
- Cavitation vs. Position

- Direct field pressure trend as expected with power, namely Power ∝ Pressure^2
- Low levels of stable and transient cavitation detected, even at high power levels
- Cavitation level increased with the presence of a photomask.

CONCLUSIONS

Different measurement techniques were used to better understand the acoustic performance of a megasonic photomask cleaning system. High spatial resolution maps characterized the acoustic field. Cavitation measurements indicated an absence of transient cavitation and low level stable cavitation. Schlieren imaging demonstrated the dynamic sweeping behavior on the mask surface. The culmination of these results help explain the novel cleaning performance.